Orbit Equivalence of Global Attractors for S1-Equivariant Parabolic Equations

نویسندگان

  • Carlos Rocha
  • C. Rocha
چکیده

We consider the global attractor Af for the semiflow generated by a scalar semilinear parabolic equation of the form ut = uxx + f(u, ux), defined on the circle, x ∈ S. Using a characterization of the period maps for planar Hamiltonian systems of the form u′′ + g(u) = 0 we discuss questions related to the topological equivalence between global attractors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbit equivalence of global attractors of semilinear parabolic di erential equations

We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x; u; ux) on the unit interval 0 x 1 with Neumann boundary conditions. A permutation f is de ned by the two orderings of the set of (hyperbolic) equilibrium solutions ut 0 according to their respective values at the two boundary points x = 0 and x = 1: We prove that two global attractors, Af and Ag, are globally C0...

متن کامل

Orbit Equivalence of Global Attractors of Semilinear Parabolic Differential Equations

We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x, u, ux) on the unit interval 0 ≤ x ≤ 1 with Neumann boundary conditions. A permutation πf is defined by the two orderings of the set of (hyperbolic) equilibrium solutions ut ≡ 0 according to their respective values at the two boundary points x = 0 and x = 1. We prove that two global attractors, Af and Ag, are glo...

متن کامل

A permutation characterization of Sturm global attractors of Hamiltonian type

We consider Neumann boundary value problems of the form ut = uxx + f on the interval 0 ≤ x ≤ π for dissipative nonlinearities f = f(u). A permutation characterization for the global attractors of the semiflows generated by these equations is well known, even in the much more general case f = f(x, u, ux). We present a permutation characterization for the global attractors in the restrictive clas...

متن کامل

Do Global Attractors Depend on Boundary Conditions ? 217

We consider global attractors of in nite dimensional dynamical systems given by dissipative partial di erential equations u t = u xx + f(x; u; u x ) on the unit interval 0 < x < 1 under separated, linear, dissipative boundary conditions. Global attractors are called orbit equivalent, if there exists a homeomorphism between them which maps orbits to orbits. The global attractor class is the set ...

متن کامل

Sturm global attractors for $S^1$-equivariant parabolic equations

We consider a semilinear parabolic equation of the form ut = uxx + f(u, ux) defined on the circle x ∈ S = R/2πZ. For a dissipative nonlinearity f this equation generates a dissipative semiflow in the appropriate function space, and the corresponding global attractor Af is called a Sturm attractor. If f = f(u, p) is even in p, then the semiflow possesses an embedded flow satisfying Neumann bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013